
Grouped-Query Latent Attention: AMore

Device-Friendly Attention Structure

Yingkai Tang
Yali High School International Department, Changsha, Hunan, China

tangyingkai08908@outlook.com

1. Abstract

In recent years, the Multi-Head Attention(MHA) mechanism has gained widespread use due to its
exceptional language modeling capabilities. However, its high time complexity and memory usage
limit its potential for deployment on edge devices. While existing improvements, such as
Grouped-Query Attention (GQA), have mitigated these issues, they can still pose challenges for
resource-constrained devices. Therefore, this paper proposes an improved GQA structure:
Grouped-Query Latent Attention (GQLA). GQLA reduces resource consumption further based on GQA
by projecting the input into a lower-dimensional latent space (using a latent denominator of 2) and
performing GQA within this space. Evaluation results showed that, compared to GQA, GQLA is 9.11%
faster, and 72.19% lower standard deviation indicates a more stable generation. Also, GQLA uses 0.17
MB less memory on average with negligible variance across runs. Meanwhile, the degradation of
expressive capabilities of GQLA-based model remains acceptable. This work provides a new, practical
approach to developing and deploying large-scale models.

2. Introduction

Transformers have revolutionized Natural Language Processing(NLP). While Multi-Head
Attention(MHA) is foundational due to its capability of capturing diverse dependencies across different
subspaces within the input sequence[1], the community has shifted towards more efficient variants for
deployment, since the quadratic growth of its computational and memory complexity[2] can be
challenging for most edge devices. The overall time complexity for computing attention scores in MHA
is:

�(�2�)
where
L is the length of the sequence

d is the total hidden dimension

Grouped-Query Attention(GQA) has emerged as a dominant standard. It efficiently balances the
performance and memory usage by grouping multiple query heads to share a single key and value
head[3]. This reduces the size of the KV cache during autoregressive generation, leading to lower
memory usage at inference time. However, GQA does not alter the original hidden dimension, meaning
that the process of high-dimension vectors is still required. This constitutes the primary computational
and memory bottleneck. It is worth exploring methods to maintain the advantages of grouping in GQA
while further reducing the dimensionality of internal representations to achieve ultimate efficiency.

This paper proposes one possible solution, Grouped-Query Latent Attention(GQLA). Based on GQA,
GQLA introduces a lower-dimension latent space where the inputs are projected. The attention
calculations are performed in this latent space. At last, the results are projected to the original
high-dimension space.

The advantage of GQLA is that while retaining the grouping feature of GQA, it further reduces the
time consumption and memory usage of attention calculation.

3. Methods

3.1 Preliminaries: Grouped Query Attention (GQA)

GQA significantly reduces memory consumption and computational consumption while preserving
model expressiveness by grouping multiple query heads to share the same set of keys and values.

- Generate Q, K, V: For the input sequence X ∈ ℝL×d where L is the length of the sequence length
and d is the hidden dimension,

� = ��� ∈ ℝ�×�×�ℎ

� = ��� ∈ ℝ�×G×�ℎ

� = ��� ∈ ℝ�×G×�ℎ

where
H is the number of heads
G is the number of groups
dh = d/H is the dimension of each head

- Reshape to support grouping: Q is reshaped into (L,H, dh), and K, V are reshaped into (L,G, dh)

- Copy K and V to corresponding heads of Q: For each group g ∈ [0, G) , the index of its
corresponding Q head is from g ∙ (H/G) to (g + 1) ∙ (H/G) − 1. Copy the K and V in each group for the
corresponding H/G Q heads.

- Calculate attention: for every Q head h:

�ℎ = �������(�ℎ��
�/ �ℎ)��

where
Oh is the output

- Concatenate all head outputs and output: Concatenate all Oh to O ∈ ℝL×Hdh = ℝL×d , and the
final output is:

������ = ���

where
Wo is the output projection matrix

3.2 Grouped Query Latent Attention (GQLA)

Grouped Query Latent Attention(GQLA) builds on the basis of GQA, further reducing computational
overhead by introducing a low-dimensional latent space.

The dimension of the latent space dlat is:

���� = d/r
where
d is the original dimension
r is the latent denominator, set by the developer

-Latent projection: Given the input sequence X ∈ ℝL×d, the latent projections are:
���� = ��� ∈ ℝL×H×dh−lat

k��� = ��k ∈ ℝL×G×dh−lat

v��� = ��v ∈ ℝL×G×dh−lat

where
H is the number of heads
G is the number of groups
dh−lat = dh/H is the dimension of each head

- Grouping and copying: qlat is reshaped to (L,H, dlat). klat and vlat is reshaped to (L,G, dlat). Copy
the K and V in each group to pair with the Q heads.

- Calculate the latent attention:

�ℎ = �������(��������
� / �ℎ−���)����

where
Oh is the output of the latent attention calculation

- Concatenate all head outputs: Concatenate all Oh to O ∈ ℝL×d. Therefore, the output is:
���� = ���

where
Wo is the output projection matrix

- Project to the original dimension:
������ = ������(�lat)

There are improvements in time complexity of attention calculation in GQLA compared to GQA. For
GQA, the time complexity of the calculation of attention score is:

�(�2�)
where:
L is the length of the sequence
d is the total hidden dimension

With the latent space, GQLA reduced the time complexity to:

�(�2 ∙ �
�
�
�)

where:
r is the latent denominator

GQLA also reduces the QKV activation memory. In GQA:
����������� = ��

����������� = ����������� = �(� ∙ ℎ��/ℎ�)
where:
hkv is the number of K/V heads
hq is the number of Q heads

In GQLA:
����������� = �(�/�)

����������� = ����������� = �(� ∙ ℎ��/(�ℎ�))

3.3 Experimental Setup

My experiment aims to compare two attention mechanisms: GQLA and GQA. The experiments were
conducted using two simple models with token and position embeddings, one attention layer, and one
linear output layer. Both models used the same seed and parameters and ran on one Nvidia Tesla T4
GPU. One model used GQLA, and the other used GQA. The parameters are listed below.

Table 1: Parameters of the Models
Vocabulary Size 1000
Hidden Dimension 512

Number of Attention Heads 8
Number of Groups 2

For GQLAmodel, the latent denominator r is set to 2.
The experimental factors and explanations are shown in the following figure.

Table 2: Factors and Explanations
Factor Explanation

t The average time required for the model to complete a single inference.
Mem Peak GPU memory consumed during model inference.

AttnSim Cosine similarity between attention patterns of the two models, measuring alignment in
learned attention behaviors.

|Δdiag| Absolute value of difference of mean diagonal attention of the two models.

Experiment 1: This test aims to evaluate the difference in inference speed between GQA and GQLA
under identical input conditions to determine whether GQLA introduces additional computational
overhead or possesses acceleration potential. The two models perform 100 forward propagations. The
time required for each inference is recorded. I applied Welch's t-test to compare the two time
distributions, setting the significance level(α) to 0.05.

Table 3: H0 and Ha for Time Test

Null Hypothesis(H0)
There are no differences between two time distributions

Alternative
Hypothesis(Ha)

The inference time of GQLA model is less than that of GQA model.
tGQLA<tGQA

Experiment 2: This test aims to evaluate whether GQLA reduces GPU/memory consumption under
identical input conditions. The two models perform 30 forward propagations. The peak graphics
memory usage is recorded. We applied Welch's t-test to compare the two memory distributions, setting

the significance level(α) to 0.05.

Table 4: H0 and Ha for Memory Test

Null Hypothesis(H0)
There are no differences between two memory distributions

Alternative
Hypothesis(Ha)

The memory usage of GQLA model is less than that of GQA model.
MemGQLA < MemGQA

Experiment 3: This test analyzes whether the latent space projection introduced by the GQLA model
alters the distribution characteristics of attention weights. We assume that GQA serves as a strong
reference for expressive attention modeling. Thus, high similarity between attention distributions
between GQLA model and GQA model would suggest that the latent projection preserves the model's
ability despite operating in a reduced-dimensional space.

The attention heat map of the two models are compared by calculating the cosine similarity, and
difference of mean diagonal attention.

4. Results

The result of Experiment 1 is shown below:
Table 5: Time Test Results

Mean Time(seconds)
tGQA=0.000812±0.000151
tGQLA=0.000738±0.000042

T-statistic 4.7400
P-value 0.000003

Mean Difference(seconds) 0.000075

The P-value is 0.000003, which is smaller than α . Therefore, we can reject H0 and conclude that
tGQLA < tGQA . Also, the standard deviation of GQLA model 0.000042 is 72.19% less than that of GQA
model, which is 0.000151, indicating a more stable generation.

The result of Experiment 2 is shown below:
Table 6: Memory Test Results

Mean Memory Usage(MB)
MemGQA=23.15±0.00
MemGQLA=22.98±0.00

T-statistic inf
P-value ≪0.05

Mean Difference(MB) 0.17

GQLA demonstrated lower peak memory consumption, with an average reduction of 0.17 MB.
Although this value may seem small, it is noteworthy that the models applied in this experiment only
contain 1 attention layer. In deeper models composed of multiple such layers, the per-layer memory
savings are expected to accumulate. Thus, it is reasonable to conclude that the design of GQLA has
indeed resulted in improved resource efficiency.

Also, the P-value is much smaller than α. Therefore, we can reject H0 and conclude that MemGQLA <

MemGQA . Although the T-statistic approaches infinity due to minimal measurement fluctuations,
considering the figure below showing GQLA's overall distribution slightly below GQA's, we can
reasonably infer that GQLA effectively reduces memory occupation by decreasing intermediate
dimensions in attention computations.

Figure 1: Memory Usage Distribution

The result of Experiment 3 is shown below:
Table 7: Attention Test Result

������� 0.9961
|Δ����| 0.0001

Figure 2: the Attention Heat Map of the Two Models
The cosine similarity(0.9961) is close to 1. This means though GQLA operate in latent space, its
attention distribution remains largely consistent with that of GQA. Combining with the result of the
difference in mean diagonal attention is small(0.0001), we can conclude that GQLA does not introduce
significant structural bias and preserves the attention patterns of the original GQAmodel.
The results have revealed that GQLA is capable of using less time and memory while retaining most
expressive capabilities compared to GQA.

5. Conclusion

In an effort to reduce the computational costs associated with the Grouped-Query Attention (GQA)

mechanism, this paper presents a new architecture: Grouped-Query Latent Attention (GQLA). By
projecting the inputs into a lower-dimensional latent space and performing attention calculations there,
GQLA is expected to improve calculation efficiency while maintaining low loss of expressiveness.
Evaluations have shown that GQLA reduces inference time by 9.11% and peak GPU memory usage by
0.17 MB. Additionally, the 72.19% reduction in standard deviation indicates enhanced generative
stability. GQLA offers a potential solution for optimizing transformer efficiency. However, more
research is needed to evaluate GQLA's performance on edge devices in real-world situations.

6. References

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &
Polosukhin, I. (2017). Attention is all you need. *arXiv preprint arXiv:1706.03762*.
https://arxiv.org/abs/1706.03762
[2] Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham, P., Rao, J., Yang, L., Ruder, S., &
Metzler, D. (2021). Long Range Arena: A benchmark for efficient transformers. *arXiv preprint
arXiv:2011.04006*. https://arxiv.org/abs/2011.04006
[3] Ainslie, J., Lee, S., Pham, M.-T., Zhai, S., Li, Z., & Wang, Y. (2023). GQA: Training generalized
multi-query transformer models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245. https://arxiv.org/abs/2305.13245

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2011.04006
https://arxiv.org/abs/2305.13245

	Grouped-Query Latent Attention: A More Device-Frie
	1.Abstract
	2.Introduction
	3.Methods
	3.1Preliminaries: Grouped Query Attention (GQA)
	3.2Grouped Query Latent Attention (GQLA)
	3.3Experimental Setup
	4.Results
	5.Conclusion
	6.References

